a2 United States Patent

Cui et al.

US009384284B2

US 9,384,284 B2
Jul. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54) VALUE-ADDED USAGE OF
PROCESS-ORIENTED EXTENSION FIELDS
IN BUSINESS MASHUPS

(71)
(72)

Applicant: SAP AG, Walldorf (DE)

Inventors: Weiyi Cui, Shanghai (CN); Xiao Xu,
Wujiang (CN); Jinghui Li, Shanghai
(CN); Haojie Zhang, Shanghai (CN);
Jun Wu, Shanghai (CN)

(73)

")

Assignee: SAP SE, Walldorf (DE)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 425 days.

@
(22)

Appl. No.: 13/669,293

Filed: Novw. 5,2012

Prior Publication Data

US 2014/0129917 Al May 8, 2014

(65)

Int. Cl1.
GO6F 17/20
GO6F 17/30
GO6F 9/54
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(52)
GOGF 17/30867 (2013.01); GOGF 9/541

(2013.01)

(58) Field of Classification Search
CPC GO6F 17/2247, GOG6F 17/24; GO6F 17/211
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
82011 Burns GO6F 17/30873
715/234

GOG6F 8/34
715/762

8,001,463 B2*

8,584,082 B2* 11/2013 Baird

* cited by examiner

Primary Examiner — Stephen Hong
Assistant Examiner — Shahid Khan

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

A method for value-added usage of process-oriented exten-
sion fields in business mashups may include generating, using
at least one processor, a mashup component with an unbound
parameter; receiving input identifying the creation of an
extension field, the extension field tied to data stored in a
database; binding the unbound parameter of the mashup com-
ponent to the extension field; presenting an application inter-
face, the application interface including the extension field;
receiving a request to load the mashup component; and in
response to receiving the request, passing the data tied to the
extension field as an input parameter to the mashup compo-
nent.

19 Claims, 7 Drawing Sheets

T
o3
i
}

e

Iy

e WYY

—F

vt

US 9,384,284 B2

Sheet 1 of 7

Jul. §5,2016

U.S. Patent

A

7

|
i
i

7t

.

G

b o o e
YO NOENZDE S,

SOANIYNGG:

US 9,384,284 B2

Sheet 2 of 7

Jul. §5,2016

d
&

N

L

U.S. Patent

US 9,384,284 B2

Sheet 3 of 7

Jul. §5,2016

U.S. Patent

Py

N#

3

&

v oid

US 9,384,284 B2

Sheet 4 of 7

Jul. §5,2016

L
OO NHOT £odhit
kS i YN LOVINGD O L0V NGO
LA

g g I TaP o T
1154 PO FALeE
DO Ry
BIOYIRDTD

U.S. Patent

US 9,384,284 B2

Sheet S of 7

Jul. §5,2016

U.S. Patent

A -,
LT,
W

7 14
2wy oy
P 75
[aed P

{2

v

o~

FG. §

US 9,384,284 B2

Sheet 6 of 7

Jul. §5,2016

U.S. Patent

N
e,

I %eN

b
oot

I
(R

FG. 6

U.S. Patent

Jul. §5,2016

Sheet 7 of 7

REAIN

MEMORY

fo

US 9,384,284 B2

e
7
RN
\Qv«.- 0000
- \“{}g\,’ -
3 M . - 730
h o DHSPLAY T
- . ALPHANUMERICY fi3
; = B ORNPUT DEVICE M

Ul NAVIGAT
OEVICE

WON 14
T S 1A

R4 --INSTRUTTHON
{
i
o STATIO
06 MEMORY
NETWORK
730) INTERFACE
DEVICE
‘ﬁ%
S
19
T N
728 -

?
{ NETWORK

DRIVE

INET

E;‘IA VRHNE-

S“{.» IR

READABLE

H

R
§

3

.NSTR&%

CTIONSH

e S

‘“iC%N Al
GENEE YK
i s{' Vi

N

o T8

US 9,384,284 B2

1
VALUE-ADDED USAGE OF
PROCESS-ORIENTED EXTENSION FIELDS
IN BUSINESS MASHUPS

TECHNICAL FIELD

This patent document pertains generally to linking data
sources including, but not by way of limitation, a system and
method for value-added usage of process-oriented extension
fields is business mashups.

BACKGROUND

A business service provider (BSP) may provide infrastruc-
ture to store and manage business data for its enterprise cli-
ents instead of the client investing in such infrastructure. A
business application may be provided to the client from the
business service provider that displays fields associated with
the business data. For example, the business application may
present the name of a contact in a contact field.

Additionally, the client may allow users (e.g., employees of
the client) or company partners to create a “mashup” compo-
nent that incorporates data from multiple sources. For
example, business data such as client addresses could be
joined with snapping data from a third-party service and
shown in a single interface hosted on the business service
provider. In some instances the binding between the mashup
and business data is created by the BSP. This may lead to a
lack of customizability, if for example, a client wants to use a
piece of business data in a mashup that the BSP has not bound.

BRIEF DESCRIPTION OF DRAWINGS

Some embodiments are illustrated by way of example, and
not limitation in the figures of the accompanying drawings in
which:

FIG. 1 is an application interface, according to an example
embodiment.

FIG. 2 is a user interface for defining an extension field,
according to various embodiments.

FIG. 3 illustrates a mashup configuration user interface,
according to various embodiments.

FIG. 4 illustrates a web interface according to various
embodiments.

FIG. 5 is a flow chart illustrating a method to read an
extension field, recording to an example embodiment.

FIG. 6 is a flow chart illustrating a method to write to an
extension field, according to an example embodiment.

FIG. 7 is a diagrammatic representation of a machine its the
example form of a computer system within which a set
instructions tor causing the machine to perform any one or
more of the methodologies discussed herein may be executed.

DETAILED DESCRIPTION

The following detailed description includes references to
the accompanying drawings, which form a part of the detailed
description. The drawings show, by way of illustration, spe-
cific embodiments in which the disclosure may be practiced.
These embodiments, which are also referred to herein as
“examples,” are illustrated in enough detail to enable those
skilled in the art to practice the disclosed inventive subject
matter. The embodiments may be combined, other embodi-
ments may be utilized, or structural, logical, and electrical
changes may be made without departing from the scope of the
present disclosure. The following detailed description is,

10

25

35

40

45

55

2

therefore, not to be taken in a limiting sense, and the scope of
the present disclosure is defined by the appended claims and
their equivalents.

An enterprise (e.g., a company of one or more individuals)
may store and access business information in a number of
different ways. For example, an enterprise might store infor-
mation about production, sales, human resources, etc., in one
or more database structures. Collectively this information
may be considered business object data or context informa-
tion. In an embodiment, instead of the enterprise purchasing
and maintaining the backend components (e.g., web servers,
hard disk drives, etc.), the enterprise may contract with a
business service provider (BSP) (e.g., SAP®). The business
service provider may have multiple enterprise clients and
may maintain business object data for each client as “inter-
nal” data. For demonstrative purposes throughout this disclo-
sure, a fictional “ACME Corp,” will be used as an enterprise/
company that is a client of the BSP.

Additionally, the BSP may allow a company to access and
edit the company’s information using a web-based interface
referred to as a business application. For example, one or
more fields may be presented in the business application that
are tied back to the underlying database structure. The inter-
face(s) may be transmitted to a user and rendered on a client
device (e.g., personal computer, mobile phone) for interact-
ing with the business object data. A user may be an employee
of the enterprise or another entity that authenticates with the
business service provider before the electronic interfaces are
transmitted to the client device.

The electronic interfaces may be implemented using a
variety of technologies. For example, an HTML interface
may include an application programmed using a web frame-
work (e.g.,, MICROSOFT® SILVERLIGHT® software
framework, ADOBE® FLASH® software framework,
JAVA® software framework). Thus, in an example, a web
browser executed on a client device may transmit an HTTP
request for a website, hosted at the business service provider,
and receive an HTMIL webpage with the application in
response.

The application, may be rendered within the browser of the
client creating one or more user input and output elements on
a display of the client device. Using an input device of the
client device, a user may interact with the user input elements
(e.g., selecting, highlighting, and entering text). The applica-
tion/webpage may then update according to the interaction, in
various examples, data representing the interaction may be
transmitted to the business service provider or other network
location for processing before the application is updated.

The interface may provide tools to create “mashups” by the
company. A mashup may access one or more external services
(e.g., mapping service or social network) within the context
of the business application and may also write the data
received (e.g., parameters) from the external service to the
business application. For example, a mashup may read infor-
mation in fields of the business application screen and place
the information in an “out-port” of the business application.
The information in the out-port may be sent to an “in-port” of
the mashup and then used as input parameters to a call (e.g.,
HTTP GET) to an external service. When the external service
responds, parameters included in the response may be written
back, to an out-port of the mashup and routed to an in-port of
the business application to fill-in another field of the business
application. The fields on the business application screen may
be tied to information stored in the internal database structure
hosted by the BSP for the company such that for example, a
contact entry may be updated based on information received
from the external service.

US 9,384,284 B2

3

The tools for creating mashups may come with preset
bindings that bind parameters in the mashups to base classes
of fields on the application screen (e.g., via the imports and
out-ports). Base classes fields may include, for example, a
name and address of a contact. However, a problem arises in
that each company may want classes of fields that are not
available in the base classes or not bound to a mashup param-
eter. For example, one company may want a contact entry in
a database to include a field for a social network user ID.

Because there is conceivably a limitless supply of types of
data a company may wish to bind, the BSP may not be able to
define and hind all the in-ports, out-port, and fields. Thus, the
company may be limited in the bindings available (e.g., base
classes) made from parameters in the mashups to the under-
lying business content data of the company, or the company
may have to wait until the BSP updates its business applica-
tion screen to incorporate the new field. Described herein are
various embodiments that facilitate the creation of extension
fields to help alleviate same of the problems discussed above.

FIG. 1 is an application interface, according to an example
embodiment. FIG. 1 includes webpage interface 100 that
includes application component 102, mashup component
104, extension field A 106, extension field B 108, dynamic
parameter 110, and output parameter 112. Application com-
ponent 102 also includes application in-port 120, application
out-port 114, mashup in-port 116, and mashup out-port 118.

While not illustrated, webpage interface 100 (e.g., business
application) may be transmitted from a server of a BSP and
received at a network-connected device. The server may be
implemented on one physical device or multiple devices. The
devices may be located in a single location or may be distrib-
uted across multiple locations. Additionally, mashup compo-
nent 104 may communicate with an external service (e.g.,
web mapping, web searching) via a network.

In various embodiments, the server, network-connected
device, and external service may be connected via one or
more networks. Example networks may include local-area
networks (LAN), wide-area networks (WAN), wireless net-
works (e.g., 802.11 or cellular network), the Public Switched
Telephone Network (PSTN) network, ad hoc networks, per-
sonal area networks (e.g., Bluetooth) or other combinations
or permutations of network protocols and network types. The
networks may include a single local area network (LAN) or
wide-area network (WAN), or combinations of LAN’s or
WAN?’s, such as the Internet.

In an embodiment, data may be exchanged between the
server, network connected device, and external device via one
or more data exchange interfaces. For example, a data
exchange interface may be implemented as one or more
Application Programming Interface (API). A data exchange
interface may also include one or more function calls for the
retrieval or submission of data (e.g., REST, request/response
model) from the external service.

Users may internet with the elements in the application
component 102 via a network connected user device.
Examples of a user device include, but are not limited to,
laptops, tablets, cell phones, smart phones, feature phones,
personal computers, network access cards, and other devices
capable of communicating an network.

In various embodiments, webpage interface 100 may be
presented to a user of a company by entering a domain,
address into a web browser executing on a user device. Upon
entering the domain address into the web browser, the user
device may transmit a request (e.g., an HTTP GET request)
over a network to a server of the BSP. In response to the
requests the server may transmit one or more webpage files
back to the user device that are associated with the company.

10

15

20

25

30

35

40

45

50

55

60

65

4

The webpage(s) may be formatted according to a markup
language such as HyperText Markup Language (HTML).
Then, the web browser on the user device may interpret the
markup language and render webpage(s) on a display device
of the user device. A BSP may have different webpages for
each client. The webpages may include a business application
component tailored to the client and facilitate the creation and
use of mashup components.

FIG. 1 illustrates an overview of how data may flow during
read and write operations between application component
102 and mashup component 104 after a user has created the
extensions fields and bindings.

In various embodiments, the data in an extension field read
operation flows from an extension field and into a dynamic
parameter of a mashup. For example, data may be entered into
extension field A 106 by a user. When mashup component 104
is loaded (e.g., a user requests the mashup be displayed), the
data in extension field A 106 may be placed in application
out-port 114 and routed to mashup in-port 116 where itis used
as dynamic parameter 110.

Dynamic parameter 110 may be a parameter that is used in
a POST call to an external service. For example, consider an
API call to a search engine. The API may request a search
string as a parameter represented by ‘q’ in the following
statement:

http:/www.examplesearch.com/results.htm1?q=

samplesearch
The search parameter may be the data that comes from exten-
sion field A 106. In various embodiments, extension field A
106 has a default value. In various embodiments, data in
extension field A 106 may be retrieved from a business object
of'a company stored in a database.

In various embodiments, the data flow in an extension field
write operations starts at an output parameter of a mashup
component and flows to an extension field of an application
component. For example, during execution of a mashup com-
ponent, parameterized data may be received using an HTTP
GET call. For example, continuing with the search engine
example, a set of results of the search may be transmitted back
to mashup component 104 with the title of a result being one
parameter. The title of one of the results may be used as the
data for output parameter 112. This data may be placed in
mashup out-port 118 and routed to application in-port 120
which in turn displays the data in extension field B 108. In an
embodiment, the data that is displayed in extension field B
108 is also stored as a business object in a database.

FIGS. 2-4 illustrate a series of user interfaces for setting up
a social networking extension field, according to various
examples.

FIG. 2 is a user interface for defining an extension field,
according to various examples. User interface 200 includes
business contact data 202, field type data 204, default value
data 206, field value 208 and tooltip data 210. User interface
200 may be presented (e.g., transmitted) to a user using an
application interface such as application component 102.

As illustrated, there may be various options for an exten-
sion field that is created by a user. For example, a type of
contact information may be specified for the field. In FIG. 2,
the business contact is for general information. Extension
fields may also have different types. For example, field type
data 204 is illustrated as a “text” typo, but other types may
also be used, including, but not limited to, decimal numbers,
e-mail addresses, date, time, indicator, and web addresses.
The extension field may also have a default value that may be
shown in an application screen. The extension field in FIG. 2
has no default value specified; therefore, when the field is
displayed, the field may be blank.

US 9,384,284 B2

5

In an embodiment, field value 208 specifies the identifier
by which the extension field may be referenced in a mashup
component as further explained with reference to FIG. 3.
Additionally, field value 208 may relate to the field of a
contact business object. For example, “Social Network ID”
may refer to a field of a contact in the general information
portion of a contact as stored in a BSP database. Tooltip data
210 may be displayed when a cursor hovers over the exten-
sion field in an application screen.

FIG. 3 illustrates a mashup configuration user interface
300, according to various embodiments. As with FIG. 2,
interface 300 may be displayed in an application component
such as application component 102 of FIG. 1. FIG. 3 illus-
trates a list of mashups 302 that are available for configuration
grouped according to various categories. In an example,
social networking profile mashup 304 is selected. Therefore,
the properties and extension field bindings relate to the social
networking profile mashup 304 in this example.

In an embodiment, {ID} binding 306 is defined as “Exten-
sion Field ‘Social Network ID” 308. Thus, the ID parameter
of the social networking profile is bound to the “Social Net-
work ID” extension field that was defined in FIG. 2, in an
example. Additionally, FIG. 3 indicates that the appearance of
the mashup binding is a link near the extension field.

FIG. 4 illustrates a web interface, according to various
embodiments. Web Interface includes application component
400, mashup component 410, contact overview 402, contact
details 404, social network ID 406, social network link 408,
and social network profile 412.

In various embodiments, FIG. 4 illustrates an example
contact editor that relates to the extension field defined in
FIG. 2 and mashup configured in FIG. 3. As illustrated, John
Doe is a contact that may be stored as a business object in a
database maintained by a BSP on behalf of a user of the web
interface. As discussed with respect to FIG. 2, a company may
have a field for the social network ID of its contacts. Thus, a
user may have filled in data for social network 1D 406 for John
Doe as JDOE. In other words, social network ID is not only a
field of the business object, but also an extension field as
defined in FIG. 2.

A user may click on social network link 408 to display
mashup component 410 that includes social network profile
412 as configured in FIG. 3. In an embodiment, JDOE is
passed to the mashup component 410 to be used as a dynamic
parameter and used in an HTTP POST call a social network-
ing service to retrieve the social networking profile of John
Doe (e.g., http://www.examplesite.com/users/JDOE).

FIG. 5 is a flow chart illustrating a method to read an
extension field, according to an example embodiment. In
various embodiments, the method 500 may be performed by
any of the modules, logic, or components described herein.
For narrative purposes, method 500 may be performed by a
server or servers of the BSP. Further, a user (e.g., an employee
of'a company that has contracted with the BSP) may interact
with user interfaces provided by the BSP and transmit input
from a user device to the server or servers.

At block 502, in an embodiment, a mashup component is
generated with a dynamic parameter unbound. As discussed
previously, a dynamic parameter may be used in a HTTP
POST call to an external service and thus may also be con-
sidered an input parameter with respect to a mashup. In an
embodiment, unbound means that a dynamic parameter has
not been tied to an extension field of an application compo-
nent. This may be in contrast to base fields that have already
been bound according to the BSP. Thus, parameters tied to
base fields may not be considered dynamic according to vari-
ous embodiments.

30

35

40

45

6

The mashup component may be generated through the use
of one or more user interfaces supplied by the BSP. For
example, the user may interact with the user interfaces to
define a mashup according to the preferences (e.g., layout,
which external services to call, etc.) of the user. The prefer-
ences and associated data may be transmitted back to the BSP.
The BSP may then generate the mashup component accord-
ing to these preferences and data. In an embodiment, gener-
ating includes storing a mashup definition file at the BSP. The
mashup definition file may include the layout of the mashup
and the preference as defined by the user. In various embodi-
ments, the mashup definition file is stored as a structured data
file such as XML.

In an embodiment, at block 504, the dynamic parameter
may be extracted in the backend. In various embodiments,
backend refers to the servers operated by the BSP. Extraction
may include, for example, storing and retrieving data that
identifies the dynamic parameter in the mashup definition file
for later use in binding.

In an embodiment, at block 506, an extension field to be
displayed in an application component (e.g., business appli-
cation) is created. For example, user may use an interface
such as that presented in FIG. 2 to define an extension field.
The extension field may be tied to a piece of data in a business
object such as a contact’s social network ID that is stored in a
database of the BSP. Data associated with the crated exten-
sion field (e.g., the data filled in an interface of FIG. 2) may be
transmitted back to the BSP for creation of the extension field.

In an embodiment, at block 508, a change description file
about the extension field is stored by the BSP. For example,
application component such as that displayed in FIG. 1 may
be changed according to the created mashups and extension
fields of user. In order to accurately represent the new fields
and matchups, a change description file may be stored that
indicates the added/removed components of the application
component. Thus, with respect to block 508, the change
description file may indicate that the created extension field is
to be presented (e.g., transmitted for display in a browser of a
user) in the application component the next time the applica-
tion component is loaded/transmitted to a user. The change
description file may include the preferences for layout and
name of the extension field as defined by the user.

In an embodiment at block 510, the dynamic parameter is
bound to the created extension field. For example, a binding
user interface tool such as that presented in FIG. 3 may be
used by a user to bind the created extension field to the
dynamic parameter of the mashup generated in block 502. In
an embodiment, the dynamic parameter and extension field
are both displayed in the binding user interface tool.

In an embodiment, at block 512, extension field informa-
tion is stored in the change description file along with the
mashup component information. For example, the extension
field information may represent the binding as defined at
block 510. Thus, the change description file may include data
identifying the created extension field and the binding of the
extension field to the mashup component as defined by user.

In an embodiment, at block 514 a dynamic out-port is
created with the extension field information when the appli-
cation component is loaded. For example, consider a user that
wants to use the newly created extension field. Upon loading
anapplication component in which the created extension field
is presented to the user, an out-put may be dynamically cre-
ated for the created extension field. This may be contrast to
base fields in which the out-port may already be created prior
to the application component being loaded. In an embodi-
ment, the extension field may be loaded with data from a
database that is associated with the extension field. For

US 9,384,284 B2

7

example, a social network ID of a contact may be presented
(e.g., transmitted for display) in the extension field.

In an embodiment, an out-port refers to a data interface
exposed by an application Ul component (e.g., extension
field). When an out-port is used (e.g., triggered or fired) data
is passed to an in-port of another UI component or mashup.
Similarly, an in-port is a data interface that accepts data from
an out-port. In various embodiments, imports are predefined
for a mashup according to type (e.g., text, etc.).

In various embodiments, at block 516, the created out-port
is triggered when the mashup component bound to the exten-
sion field is loaded (e.g., a user requests to use the mashup).
Thus, data tied to the extension port (e.g., data from a business
object stored in a database) may be loaded into the out-port of
the extension field when the mashup is loaded. Then, the data
may be passed to an in-port of the mashup component. In turn,
the in-port of the mashup component may be associated with
the dynamic parameter defined in block 502. Accordingly, the
mashup component may use the data from the in-port as an
input parameter to an API call to an external service associ-
ated with the mashup as defined in block 502.

FIG. 6 is a flow chart illustrating a method to write to an
extension field, according to an example embodiment. In
various embodiments, the method 600 may be performed by
any of the modules, logic, or components described herein.
For narrative purposes, method 600 may be performed by a
server or servers of the BSP. Further, a user (e.g., an employee
of'a company that has contracted with the BSP) may interact
with user interfaces provided by the BSP and transmit input
from a user device to the server or servers.

At block 602, in an embodiment, a mashup component is
generated with an output parameter. As discussed previously,
an output parameter may be part of the result of an API call to
an external service. The mashup component may be gener-
ated through the use of one or more user interfaces supplied
by the BSP. For example, the user may interact with the user
interfaces to define a mashup according to the preferences
(e.g., layout, which external services to call, etc.) of the user.
The preferences and associated data may be transmitted back
to the BSP. The BSP may then generate the mashup compo-
nent according to these preferences and data. In an embodi-
ment, generating includes storing a mashup definition file at
the BSP. The mashup definition file may include the layout of
the mashup and the preference as defined by the user. In
various embodiments, the mashup definition file is stored as a
structured data file such as XML.

In an embodiment at block 604, the output parameter may
be extracted in the backend. In various embodiments, back-
end refers to the servers operated by the BSP. Extraction may
include, for example, storing and retrieving data that identi-
fies the output parameter in the mashup definition file for later
use in binding.

In an embodiment, at block 606, an extension field to be
displayed in an application component (e.g., business appli-
cation) is created. For example, a user may use an interface
such as that presented in FIG. 2 to define an extension field.
The extension field may be tied to a piece of data in a business
object such as a contact’s social network ID that is stored in a
database of the BSP. Data associated with the created exten-
sion field (e.g., the data billed in an interface of FIG. 2) may
be transmitted back to the BSP for creation of the extension
field.

In an embodiment, at block 608, a change description file
about the extension field is stored by the BSP. For example, an
application component such as that displayed. In FIG. 1 may
be changed according to the created mashups and extension
fields of a user. In order to accurately represent the new fields

10

15

20

25

30

35

40

45

50

55

60

65

8

and matchups, a change description file may be stored that
indicates the added/removed components of the application
component. Thus, with respect to block 608, the change
description file may indicate that the created extension field is
to be presented (e.g., transmitted for display in a browser of a
user) in the application component the next time the applica-
tion component is loaded/transmitted to a user. The change
description file may include the preferences for layout and
name of the extension field as defined by the user.

In an embodiment, at block 610, the output parameter is
bound to the created extension field. For example, a binding
user interface tool such as that presented in FIG. 3 may be
used by a user to bind the created extension field to the output
parameter of the mashup generated in block 602. In an
embodiment, the output parameter and extension field are
both displayed in the binding user interface tool.

In an embodiment, at block 612, extension field informa-
tion is stored in the change description file along with the
mashup component information. For example, the extension
field information may represent the binding as defined at
block 610. Thus, the change description file may include data
identifying the created extension field and the binding of the
extension field to the mashup component as defined by user.

In an embodiment, at block 614 a dynamic in-port is cre-
ated with the extension field information when the applica-
tion component is loaded. For example, consider a user that
wants to use the newly created extension field. Upon loading
anapplication component in which the created extension field
is presented to the user, an in-port may be dynamically cre-
ated for the created extension field. This may be in contrast to
base fields in which the in-port may already be created prior
to the application component being loaded.

In an embodiment, an out-port refers to a data interface
exposed by application Ul component (e.g., extension field).
When an out-port is used (e.g., triggered or fired) data is
passed to an in-port of another Ul component or mashup.
Similarly, an in-port is a data interface that accepts data from
an out-port. In various embodiments, imports are predefined
for a mashup according to type (e.g., text, etc.).

In various embodiments, at block 616, the output param-
eter is loaded with the value of a result of an execution of a
mashup. For example, the mashup may communicate with an
external service (e.g., social networking service) to retrieve
the social networking ID of a contact. The social networking
ID may be received as a parameter and loaded in the output
parameter defined in block 602.

In various embodiments, at block 618, the data in the
out-put parameter may be passed to the dynamically created
in-port of the application component, for example an out-port
of'the mashup component may be loaded with the value ofthe
result and passed to the in-port.

In various embodiments, at block 620, the value from the
executed mashup (e.g., the social networking ID) may be
shown in the extension field. For example, the value as loaded
in the in-port may be presented in the extension field. In an
embodiment, a contact entry in a database may be updated
with the social networking ID as presented in the extension
field.

Modules, Components and Logic

Certain embodiments are described herein as including
logic or a number of modules, component, engines or mecha-
nisms (collectively referred to as modules). Modules may
constitute either software modules (e.g., code embodied (1)
on a non-transitory machine-readable medium or (2) in a
transmission signal) or hardware-implemented modules. A
hardware-implemented module is a tangible unit capable of
performing certain operations and may be configured or

US 9,384,284 B2

9

arranged in a certain manner. In example embodiments, one
or more computer systems (e.g., a standalone, client or server
computer system) or one or more processors may be config-
ured by software (e.g., an application or application portion)
as a hardware-implemented module that operates to perform
certain operations as described herein.

In various embodiments, a hardware-implemented module
may be implemented mechanically or electronically. For
example, a hardware-implemented module may comprise
dedicated circuitry or logic that is permanently configured
(e.g. as a special-purpose processor, such as a field program-
mable gate array (FPGA) or an application-specific inte-
grated circuit (ASIC)) to perform certain operations. A hard-
ware-implemented module may also comprise
programmable logic or circuitry (e.g., as encompassed within
a general-purpose processor or other programmable proces-
sor) that is temporarily configured by software to perform
certain operations, it will be appreciated that the decision to
implement a hardware-implemented module mechanically,
in dedicated and permanently configured circuitry, or in tem-
porarily configured circuitry (e.g., configured by software)
may be driven by cost and time considerations.

Accordingly, the term “hardware-implemented module”
should be understood to encompass a tangible entity, be that
an entity that is physically constructed, permanently config-
ured (e.g., hardwired) or temporarily or transitorily config-
ured (e.g., programmed) to operate in a certain manner and/or
to perform certain operations described herein. Considering
embodiments in which hardware-implemented modules are
temporarily configured (e.g., programmed), each of the hard-
ware-implemented modules need not be configured or instan-
tiated at any one instance in time, for example, where the
hardware-implemented modules comprise a general-purpose
processor configured using software, the general-purpose
processor may be configured as respective different hard-
ware-implemented modules at different times. Software may
accordingly configure a processor, for example, to constitute
aparticular hardware-implemented module at one instance of
time and to constitute a different hardware-implemented
module at a different instance of time.

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by software)
or permanently configured to perform the relevant operations.
Whether temporarily or permanently configured, such pro-
cessors may constitute processor-implemented modules that
operate to perform one or more operations or functions. The
modules referred to herein may, in some example embodi-
ments, comprise processor-implemented modules.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
of the operations of a method may be performed by one or
more processors or processor-implemented modules. The
performance of certain of the operations may be distributed
among the one or more processors, not only residing within a
single machine, hut deployed across a number of machines. In
some example embodiments, the processor or processors may
be located in a single location (e.g., within a home environ-
ment, an office environment or as a server farm), while in
other embodiments the processors may be distributed across
a number of locations.

The one or more processors may also operate to support
performance of the relevant operations in a “cloud comput-
ing” environment or as a “software as a service” (SaaS). For
example, at least some of the operations may be performed by
a group of computers (as examples of machines including
processors), these operations being accessible via a network

10

15

20

25

30

35

40

45

50

55

60

65

10

(e.g., the Internet) and via one or more appropriate interfaces
(e.g., Application Program Interfaces (APIs).)

Example Machine Architecture and Machine-Readable
Medium

FIG. 7 is a block diagram of machine in the example form
of'a computer system 700 within which instructions 724 for
causing the machine to perform any one or more of the meth-
odologies discussed herein may be executed. In alternative
embodiments, the machine operates as a standalone device or
may be connected (e.g., networked) to other machines. In a
networked deployment the machine may operate in the capac-
ity of a server or a client machine in server-client network
environment, or as a peer machine in a peer-to-peer (or dis-
tributed) network environment. The machine may be a per-
sonal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, a web
appliance, a network router, switch or bridge, or any machine
capable of executing instructions (sequential or otherwise)
that specify actions to be taken by that machine. Further,
while only a single machine is illustrated, the term “machine”
shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodologies
discussed herein.

The example computer system 700 includes a processor
702 (e.g., a central processing unit (CPU), a graphics process-
ing unit (CPU) or both), a main memory 704 and a static
memory 706, which communicate with each other via a bus
708. The computer system 700 may further include a video
display unit 710 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)). The computer system 700 also
includes an alphanumeric input device 712 (e.g., a keyboard),
a user interface (UI) navigation device 714 (e.g., a mouse), a
disk drive unit 716, a signal generation device 718 (e.g., a
speaker) and a network interface device 720.
Machine-Readable Medium

The disk drive unit 716 includes a machine-readable
medium 722 on which is stored one or more sets of data
structures and instructions 724 (e.g., software) embodying or
utilized by any one or more of the methodologies or functions
described herein. The instructions 724 may also reside, com-
pletely or at least partially, within the main memory 704
and/or within the processor 702 during execution thereof by
the computer system 700, the main memory 704 and the
processor 702 also constituting machine-readable media.

While the machine-readable medium 722 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” may include a single medium or
multiple media (e.g. a centralized or distributed database,
and/or associated caches and servers) that store the one or
more instructions 724 or data structures. The term “machine-
readable medium” shall also be taken to include any tangible
medium that is capable of storing, encoding or carrying
instructions for execution by the machine and that cause the
machine to perform any one or more of the methodologies of
the embodiments of the present invention, or that is capable of
storing, encoding or carrying data structures utilized by or
associated with such instructions. The term “machine-read-
able medium” shall accordingly be taken to include, but not
be limited to, solid-state memories, and optical and magnetic
media. Specific examples of machine-readable media include
non-volatile memory, including by way of example semicon-
ductor memory devices, e.g., Erasable Programmable Read-
Only Memory (EPROM), Electrically Erasable Program-
mable Read-Only Memory (EEPROM), and flash memory

US 9,384,284 B2

11

devices; magnetic disks such as internal hard disks and
removable disks; magneto-optical disks; and CD-ROM and
DVD-ROM disks.

Transmission Medium

The instructions 724 may further be transmitted or received
over a communications network 726 using a transmission
medium. The instructions 724 may be transmitted using the
network interface device 720 and any one of a number of
well-known transfer protocols (e.g., HTTP). Examples of
communication networks include a local area network
(“LAN"), a wide area network (“WAN”), the Internet, mobile
telephone networks, Plain Old Telephone (POTS) networks,
and wireless data networks (e.g., WiFiand WiMax networks).
The term “transmission medium” shall be taken to include
any intangible medium that is capable of storing, encoding or
carrying instructions for execution by the machine, and
includes digital or analog communications signals or other
intangible media to facilitate communication of such soft-
ware.

Although an embodiment has been described with refer-
ence to specific example embodiments, it will be evident that
various modifications and changes may be made to these
embodiments without departing from the broader spirit and
scope of the disclosure. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a
restrictive sense. The accompanying drawings that form a
part hereof show by way of illustration, and not of limitation,
specific embodiments in which the subject matter may be
practiced. The embodiments illustrated are described in suf-
ficient detail to enable those skilled in the art to practice the
teachings disclosed herein. Other embodiments may be uti-
lized and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. This Detailed Description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which such
claims are entitled.

Such embodiments of the inventive subject matter may be
referred to herein, individually and/or collectively, by the
term “invention” merely for convenience and without intend-
ing to voluntarily limit the scope of this application to any
single invention or inventive concept if more than one is in
fact disclosed. Thus, although specific embodiments have
been illustrated and described herein, it should be appreciated
that any arrangement calculated to achieve the same purpose
may be substituted for the specific embodiments shown. This
disclosure is intended to cover any and all adaptations or
variations of various embodiments. Combinations of the
above embodiments, and other embodiments not specifically
described herein, will be apparent to those of skill in the art
upon reviewing the above description.

What is claimed is:

1. A method comprising:

generating, using at least one processor, a mashup compo-
nent with an unbound dynamic parameter, the unbound
dynamic parameter being an 1/O field unassociated with
a data entry field of an application interface;

receiving input identifying creation of an extension field;
the extension field being a data entry field defined by at
least a field type, a field value by which the extension
fieldis referenced, and a user interface element by which
the extension field is displayed in an application inter-
face, the extension field tied to data stored in an internal
database;

10

15

20

25

30

35

40

45

50

55

60

65

12

binding the unbound dynamic parameter of the mashup
component to the extension field, the binding creating an
association between the mashup component and the
extension field;
presenting the application interface, the application inter-
face including the extension field, the data extension
field including at least a portion of the data tied to the
extension field, the extension field and the data tied to the
extension field being presented as the user interface
element within the application interface;
in response to presenting the application interface, gener-
ating a dynamic out-port for the extension field;
receiving a request to load the mashup component; and
in response to receiving the request:
loading the dynamic out-port for the extension field with
the data tied to the extension field;
passing the data in the loaded dynamic out-port of the
extension field to the mashup component as an input
parameter to the mashup component; and
using the input parameter in a call to an external service
remote from the internal database and in communica-
tion with the mashup via a network.
2. A method comprising:
generating, using at least one processor, a mashup compo-
nent with an unbound parameter, the unbound parameter
being an /O field unassociated with a data entry field of
an application interface;
receiving input identifying creation of a first extension field
and a second, extension field, the first extension field
being a data entry field defined by at least a field type, a
field value by which the first extension field is refer-
enced, and a first user interface element by which the
first extension field is displayed in the application inter-
face, the second extension field defined by at least a field
type, a field value by which the second extension field is
referenced, and a second user interface element by
which the second extension field is displayed in the
application interface, the first extension field tied to data
stored in a database;
binding the unbound parameter of the mashup component
to the first extension field, the binding creating an asso-
ciation between the mashup component and the first
extension field;
presenting the application interface, the application inter-
face including the first extension field and the second
extension field, the first extension field and the second
extension field presented as the first user interface ele-
ment and the second user interface element within the
application interface;
receiving a request to load the mashup component;
in response to receiving the request, passing the data tied to
the first extension field as an input parameter to the
mashup component;
passing data received by the mashup component, in
response to the input parameter, to the second extension
field; and
presenting the data received by the mashup component in
the second extension field.
3. The method of claim 2, further comprising:
storing a change description file, the change description file
including binding data identifying that the unbound
parameter is bound to the first extension field.
4. The method of claim 3, further comprising:
in response to presenting the application interface, gener-
ating an out-port for the first extension field using the
binding data stored in the change description file.

US 9,384,284 B2

13

5. The method of claim 4, further comprising:

loading the out-port of the first extension field with the data
tied to the first extension field upon receiving the request
to load the mashup component; and

wherein passing the data tied to the first extension field
includes passing the data loaded in the out-port of the
first extension field as the input parameter to the mashup
component.

6. The method of claim 2, further comprising:

5

loading the data tied to the first extension field from the 10

database; and

presenting the data tied to the first extension field in the first

extension field.

7. The method of claim 2, wherein binding the unbound
parameter of the mashup component to the first extension
field includes:

presenting a binding user interface tool; and

receiving input via the binding user interface tool that

identifies that the unbound parameter is to be bound to
the first extension field.

8. The method of claim 2, wherein the mashup component
combines data from an external service, remote from the
database and in communication with the mashup via a net-
work, and data stored in the database and wherein the input
parameter is used in an API call to the external service.

9. A method comprising:

generating, using at least one processor, a mashup compo-

nent with an output parameter and an out-port related to
the output parameter;
receiving input identifying creation of an extension field,
the extension field defined by at least a field type by
which the extension field is referenced and a user inter-
face element by which the extension field is displayed in
an application interface, the extension field tied to data
stored in a database;
binding the output parameter of the mashup component to
the extension field, the binding creating an association
between the mashup component and the extension field;

receiving a request to load an application associated with
the data stored in the database tied to the extension field;
and

in response to receiving the request:

generating an in-port related to the extension field;

presenting the application interface, the application
interface including the extension field and the mashup
component, the extension field presented as the user
interface element within the application interface;

loading parameter data from the mashup component into
the out-port;

passing the parameter data tied to the generated in-port
related to the extension field; and

updating the data stored in the database, to which the
extension field is tied, with the parameter data from
the mashup component.

10. The method of claim 9, further comprising:

storing a change description file, the change description file

including binding data identifying that the output
parameter is bound to the extension field.

11. The method of claim 10, further comprising:

updating the application interface according to the change

description file.

12. The method of claim 9, wherein the mashup component
retrieves the parameter data from an external service remote
from the database and in communication with the mashup via
a network.

13. The method of claim 9, further comprising:

presenting the parameter data in the extension field.

20

25

30

35

40

45

50

55

60

14

14. A non-transitory computer-readable medium compris-
ing instructions, which when executed by at least one proces-
sor, configure the at least one processor to perform a series of
operations, the operations comprising:

generating, using the at least one processor, a mashup

component with an unbound parameter, the unbound
parameter being an /O field unassociated with a data
entry field of an application interface;
receiving input identifying creation of a first extension field
and a second extension field, the first extension field
defined by at least a field type by which the first exten-
sion field is referenced and a first user interface element
by which the first extension field is displayed in the
application interface, the second extension field being a
data entry field defined by at least a field type, a field
value by which the second extension field is referenced,
and a second user interface element by which the second
extension field is displayed in the application interface,
the first extension field tied to data stored in a database;

binding the unbound parameter of the mashup component
to the first extension field, the binding creating an asso-
ciation between the mashup component and the first
extension field;

presenting the application interface, the application inter-

face including the first extension field and the second
extension field, the first extension field and the second
extension field presented as the first user interface ele-
ment and the second user interface element within the
application interface;

receiving a request to load the mashup component;

in response to receiving the request, passing the data tied to

the first extension field as an input parameter to the
mashup component;

passing data received by the mashup component, in

response to the input parameter, to the second extension
field; and

presenting the data received by the mashup component in

the second extension field.

15. The non-transitory computer-readable medium of
claim 14, wherein the operations further comprise:

storing a change description file, the change description file

including binding data identifying that the unbound
parameter is bound to the first extension field.

16. The non-transitory computer-readable medium of
claim 15, further comprising:

in response to presenting the application interface, gener-

ating an out-port for the first extension field using the
binding data stored in the change description file.

17. The non-transitory computer-readable medium of
claim 16, further comprising:

loading the out-port of the first extension field with the data

tied to the first extension field upon receiving the request
to load the mashup component; and

wherein passing the data tied to the first extension field

includes passing the data loaded in the out-port as the
input parameter.

18. A non-transitory computer-readable medium compris-
ing instructions, which when executed by at least one proces-
sor, configure the at least one processor to perform a series of
operations, the operations comprising:

generating, using the at least one processor, a mashup

component with an output parameter and an out-port
related to the output parameter;

receiving input identifying creation of an extension field,

the extension field defined by at least a field type by
which the extension field is referenced and a user inter-

US 9,384,284 B2

15

face element by which the extension field is displayed in
an application interface, the extension field tied to data
stored in a database;
binding the output parameter of the mashup component to
the extension field, the binding creating an association
between the mashup component and the extension field;
receiving a request to load an application associated with
the data stored in the database and tied to the extension
field; and
in response to receiving the request:
generating an in-port related to the extension field;
presenting application interface, the application inter-
face including the extension field and the mashup
component, the extension field resented as the user
interface element within the application interface;
loading parameter data from the mashup component into
the out-port;
passing the parameter data tied to the generated in-port
related to the extension field; and
updating the data stored in the database, to which the
extension field is tied, with the parameter data from
the mashup component.
19. The non-transitory computer-readable medium of
claim 18, wherein the operations further comprise:
storing a change description file, the change description file
including binding data identifying that the output
parameter is hound to the extension field.

#* #* #* #* #*

10

20

16

